几何尺寸与公差论坛------致力于产品几何量公差标准GD&T (GDT:ASME)|New GPS(ISO)研究/CAD设计/CAM加工/CMM测量

几何尺寸与公差论坛------致力于产品几何量公差标准GD&T (GDT:ASME)|New GPS(ISO)研究/CAD设计/CAM加工/CMM测量 (http://www.dimcax.com/hust/index.php)
-   前沿算法库 (http://www.dimcax.com/hust/forumdisplay.php?f=51)
-   -   什么是分形几何 (http://www.dimcax.com/hust/showthread.php?t=557)

spring 2007-03-06 12:55 PM

什么是分形几何
 
数学分支巡礼之十二:分形几何

spring 2007-03-06 12:56 PM

回复: 什么是分形几何
 
“谁不知道熵概念就不能被认为是科学上的文化人,将来谁不知道分形概念,也不能称为有知识。”——物理学家 惠勒

谁创立了分形几何学?

1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其愿意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。

分形几何与传统几何相比有什么特点:

⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。

⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。



什么是分维?

在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。

分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:

a^D=b, D=logb/loga

的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。另一方面,当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。与此类似,如果我们画一个Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。其实,Koch曲线的维数是1.2618……。



Fractal(分形)一词的由来

据曼德勃罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。在70年代中期以前,曼德勃罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。曼德勃罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花僚乱的满天繁星等。它们的特点是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形。



分形的定义


曼德勃罗曾经为分形下过两个定义:

(1)满足下式条件

Dim(A)>dim(A)

的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。

(2)部分与整体以某种形式相似的形,称为分形。

然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。

(i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。

(ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。

(iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。

(iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。

(v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。


科学与艺术的完美结合——分形艺术

分形诞生在以多种概念和方法相互冲击和融合为特征的当代。分形混沌之旋风,横扫数学、理化、生物、大气、海洋以至社会学科,在音乐、美术间也产生了一定的影响。

分形所呈现的无穷玄机和美感引发人们去探索。即使您不懂得其中深奥的数学哲理,也会为之感动。

分形使人们觉悟到科学与艺术的融合,数学与艺术审美上的统一,使昨日枯燥的数学不再仅仅是抽象的哲理,而是具体的感受;不再仅仅是揭示一类存在,而是一种艺术创作,分形搭起了科学与艺术的桥梁。

“分形艺术”与普通“电脑绘画”不同。普通的“电脑绘画”概念是用电脑为工具从事美术创作,创作者要有很深的美术功底。而“分形艺术”是纯数学产物,创作者要有很深的数学功底,此外还要有熟练的编程技能。

转自百度百科
http://baike.baidu.com/view/83243.htm

spring 2007-03-06 12:58 PM

回复: 什么是分形几何
 
分形是一种粗糙的或破碎的几何图形,它的组成部分可以被无限细分,而且它的局部的形状一般与整体相似。分形一般是自相似的和标度不变的。
曼德勃罗在解释“分形”一词时说:“我由拉丁语形容词fractus创造了词“分形”(fractal)。相应的拉丁语动词fragere意味着‘打破’和产生不规则的碎块。从而可见(对我们的需要是何等地合适!),除了‘破碎的’(如像碎片或曲折),fractus也应当具‘不规则’的含义,这两个含义都被保存在碎片(fragment)中”(《大自然的分形几何》,p4)。
有许多数学结构是分形,例如:谢尔宾斯基三角形、科切雪花、皮亚诺曲线、曼德勃罗集、洛仑兹吸引子等。分形同样可以描述许多真实世界的对象,如云彩、山脉、湍流和海岸线等,当然它们不是单纯的分形形状。
曼德勃罗曾给出了一个分形的数学定义:一个几何对象,它的豪斯道夫维数严格大于其拓扑维数。这不仅有些抽象,而且也不是一个令人满意的定义,因为还有好多分形,没有被该定义涵盖。后来曼德勃罗又给出了一个比较通俗的定义:部分与整体以某种形式相似的形。该定义仍然不能表达分形的全部意思,但会使很多初学者开始理解分形了,虽然还不能全部理解。
那么究竟什么是分形呢?应该说,到目前还没有严格的定义。现在一般用法尔科内(《分形集几何学》)对分形集合F的描述来判某一对象是否是分形:
(1)F具有精细的结构。即是说在任意小的尺度之下,它总有复杂的细节;
(2)F是如此的不规则,以至它的整体和局部都不能用传统的几何语言来描述;
(3)F通常具有某种自相似性,这种自相似性可以是近似的,也可能是统计意义上的;
(4)F在某种意义下的分形维数通常都大于它的拓扑维数;
(5)在多数令人感兴趣的情形下,F以非常简单的方法定义,或许以递归过程产生。


所有的时间均为北京时间。 现在的时间是 09:08 PM.