浙江大学学报(工学版)
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
2007 Vol.41 No.41 P.1083-1087
基于MCMC粒子滤波的机器人定位
Robot localization based on MCMC particle filter
许士芳,谢立,刘济林
摘要:针对基于传统粒子滤波的机器人定位方法存在粒子退化的问题,提出了基于马尔科夫蒙特卡罗(MCMC)粒子滤波的机器人定位方法.将传统的粒子滤波算法与典型的 MCMC方法——Metropolis Hastings (MH)抽样算法有机结合,并应用于机器人定位研究中.试验结果表明,MCMC方法可以有效抑制粒子退化问题.与基于传统粒子滤波的机器人定位方法相比,该方法降低了定位误差均值和定位误差最大值,取得了更高的定位精度,有效地解决了机器人定位这一非线性非高斯状态估计问题.
关键词: 马尔科夫蒙特卡罗方法;粒子滤波;机器人定位;Metropolis Hastings抽样;粒子退化
中图分类号: TP242 文献标识码: A 文章编号: 1008-973X(2007)07-1083-05
基金项目:国家自然科学基金重点资助项目(60534070);浙江省重点国际科技合作资助项目(2005C14008).
.作者简介:许士芳(1982-),女,山东德州人,博士生,主要从事机器人定位、视频编解码、图像处理等方面的研究.E-mail: shifang_xu@yahoo.com.cn
通讯联系人:刘济林,男,教授,博导. E-mail: liujl@zju.edu.cn
作者单位:许士芳,谢立,刘济林(浙江大学 信息科学与工程学院,浙江 杭州 310027)
参考文献(References):
[1]THRN S, FOX D, BURGARD W, et al. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligence, 2001, 128(1/2): 99-114.
[2]DOUCET A, FREITAS N, GORDON N. Sequential Monte Carlo methods in practice[M]. New York: Springer, 2001.
[3]DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. State Compute, 2000, 10(3): 197-208.
[4]FOX D. KLD sampling: adaptive particle filters[J]. International Journal of Robotics Research, 2003, 22 (12): 985-1003.
[5]KWOK C, FOX D, MEILA M. Adaptive real-time particle filters for robot localization[C]∥Proceedings of IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2003: 2836-2841.
[6]REKLEITIS I M. Cooperative localization and multirobot exploration[D]. Montreal, Canada: McGill University, 2003.
[7]DEREK K. Range only robot localization and SLAM with radio[D]. Pittsburgh: Carnegie Mellon University, 2004.
[8]VAN DER MERWE R, DOUCET A, DE FREITAS N, et al. The unscented particle filter[R]. Cambridge, UK: Cambridge University, 2000.
[9]ANDRIEU C, FREITAS N, DOUCET A. Sequential MCMC for Bayesian model selection[C]∥IEEE Higher Order Statistics Workshop. Ceasarea, Israel: IEEE, 1999: 130-134.
[10]GILKS W R, BERZUINI C. Monte Carlo inference for dynamic Bayesian models[C]∥Medical Research Council. Cambridge, UK: [s.n.], 1998.
[11]GORDON N J, SALOMND D J, SMITH A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2):107-113.
[12]KITAGAWA G. Monte Carlo filter and smoother for nonGaussian nonlinear state space models[J]. [WTHZ]Journal of Computational and Graphical Statistics, 1996,5(1):1-25.
[13][ZK(]LIU J S, CHEN R. Sequential Monte Carlo methods for dynamic systems[J]. Journal of the American Statistical Association, 1998, 93(443):1032-1044.