几何尺寸与公差论坛------致力于产品几何量公差标准GD&T (GDT:ASME)|New GPS(ISO)研究/CAD设计/CAM加工/CMM测量  


返回   几何尺寸与公差论坛------致力于产品几何量公差标准GD&T (GDT:ASME)|New GPS(ISO)研究/CAD设计/CAM加工/CMM测量 » 三维空间:产品设计或CAX软件使用 » CAD/CAM/CMM » SPC质量控制
用户名
密码
注册 帮助 会员 日历 银行 搜索 今日新帖 标记论坛为已读


回复
 
主题工具 搜索本主题 显示模式
旧 2009-09-05, 08:59 PM   #1
huangyhg
超级版主
 
huangyhg的头像
 
注册日期: 04-03
帖子: 18592
精华: 36
现金: 249466 标准币
资产: 1080358888 标准币
huangyhg 向着好的方向发展
默认 model reliability

model reliability
hy folk,
i'm intersting in knowing how to assess reliability of a model. for example if i have a set of experimental data i can find some correlation (polynomial or other) to approximate these. which parameter i can use to evaluate if model is good or not? excell give "r^2" and i understand that is good when is near 1 but i don't know what is it and why.... i heard also f,s, and so on....how can adress myself into so much parameters...where i can find some information about all this?
thanks a lot for consideration.
gelpino
check out our whitepaper library.
the square root of r^2 gives you the correlation factor. a good rule of thumb is: >0.9 means strong positive correlation, >0.7 means positive correlation (but there might be some additional factors that need to be controlled / identified), < 0.7 means no siginifigant correlation.
r can also go negative (<= 1.0). all this means is that as your independant variable increases, your dependant variable decreases, i.e. y = -x.
the model is always reliable, it's the data that's not
your term "reliable" should be more properly called "fit." what you seem to be asking is "how well does the model fit the data?"
for a linear regression, the aforementioned regression coefficient is the measure of how well the data fits the model or vice-versa.
the regression coefficient is essentially the square root of the variance of the fit from the mean (ssr) divided by the variance of the data from the mean (sst).
the other measure is the variance of the data from the fit (sse). if sse is zero, then all the error is due to the model and if the model's variance from the mean matches the data's variance from the mean, the fit is good. if the variance of the data from the fit is large, e.g., you have a huge cloud of data, then the regression will be poor, as there will be equally likely models that could fit the data.
ttfn
__________________
借用达朗贝尔的名言:前进吧,你会得到信心!
[url="http://www.dimcax.com"]几何尺寸与公差标准[/url]
huangyhg离线中   回复时引用此帖
GDT自动化论坛(仅游客可见)
回复


主题工具 搜索本主题
搜索本主题:

高级搜索
显示模式

发帖规则
不可以发表新主题
不可以回复主题
不可以上传附件
不可以编辑您的帖子

vB 代码开启
[IMG]代码开启
HTML代码关闭

相似的主题
主题 主题发起者 论坛 回复 最后发表
model vs drawing tolerances 9y14.41 0 notes huangyhg tec-ease(America) 0 2009-09-05 11:47 AM
current state of model based definition huangyhg tec-ease(America) 0 2009-09-04 05:38 PM
【转帖】query regarding printing drawings 9dwg0 in model space yang686526 DirectDWG 0 2009-05-07 12:06 PM
【转帖】query regarding model and layout view yang686526 DirectDWG 0 2009-05-07 12:04 PM
【转帖】paper model space yang686526 DirectDWG 0 2009-05-06 09:37 PM


所有的时间均为北京时间。 现在的时间是 11:30 PM.


于2004年创办,几何尺寸与公差论坛"致力于产品几何量公差标准GD&T | GPS研究/CAD设计/CAM加工/CMM测量"。免责声明:论坛严禁发布色情反动言论及有关违反国家法律法规内容!情节严重者提供其IP,并配合相关部门进行严厉查处,若內容有涉及侵权,请立即联系我们QQ:44671734。注:此论坛须管理员验证方可发帖。
沪ICP备06057009号-2
更多