几何尺寸与公差论坛------致力于产品几何量公差标准GD&T (GDT:ASME)|New GPS(ISO)研究/CAD设计/CAM加工/CMM测量  


返回   几何尺寸与公差论坛------致力于产品几何量公差标准GD&T (GDT:ASME)|New GPS(ISO)研究/CAD设计/CAM加工/CMM测量 » 酉空间:CAX软件开发(一)基础理论 » 计算机图形学 » 图形算法
用户名
密码
注册 帮助 会员 日历 银行 搜索 今日新帖 标记论坛为已读


回复
 
主题工具 搜索本主题 显示模式
旧 2007-02-26, 10:26 PM   #1
cam
普通会员
 
注册日期: 07-01
帖子: 44
精华: 2
现金: 206 标准币
资产: 206 标准币
cam 向着好的方向发展
默认 单侧曲面(有趣的麦比乌斯圈)和双侧曲面

麦比乌斯圈
麦比乌斯圈是一种单侧、不可定向的曲面。因A.F.麦比乌斯(August Ferdinand Möbius, 1790-1868)发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起 ,得到的曲面就是麦比乌斯圈。

麦比乌斯圈的发现:

数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?

对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。

有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。

一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。

麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将两端粘在一起,这样就做成了只有一个面的纸圈儿。

圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。

奇妙的麦比乌斯圈:

做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们惊奇有趣的结果。

如果在裁好的一张纸条正中间画一条线,粘成“麦比乌斯圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。

如果在纸条上划两条线,把纸条三等分,再粘成“麦比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带不仅没有一分为二,反而剪出一个两倍长的纸圈。

有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色 ,即区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。

麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若自你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。

“手套易位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体是可以通过扭曲时实现转换。让我们展开想象的翅膀,设想我们的空间在宇宙的某个边缘,呈现出麦比乌斯圈式的弯曲。那么,有朝一日,我们的星际宇航员会带着左胸腔的心脏出发,却带着右胸腔的心脏返回地球呢!瞧,麦比乌斯圈是多么的神奇!但是,麦比乌斯圈具有一条非常明显的边界。这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯•克莱茵(Felix Klein,1849~1925),终于找到了一种自我封闭而没有明显边界的模型,后来以他的名字命名为“克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。

通常的一张纸条两端对接得到的纸环是有两个面的。你拿一张纸条,一端扭转180度,对接起来。这样你用一支铅笔在纸带中央点一个点,然后以这个点为起点沿着纸带画线,画一圈,两个点重合了,但是不在同个面上。要想回到远处,必须再走一圈。

麦比乌斯圈的应用:

数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,“麦比乌斯圈”变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑艺术工业生产中。运用麦比乌斯圈原理我们可以建造立交桥道路,避免车辆行人的拥堵。

此帖于 2007-02-26 10:42 PM 被 cam 编辑.
cam离线中   回复时引用此帖
GDT自动化论坛(仅游客可见)
旧 2007-02-26, 10:29 PM   #2
cam
普通会员
 
注册日期: 07-01
帖子: 44
精华: 2
现金: 206 标准币
资产: 206 标准币
cam 向着好的方向发展
默认 回复: 单侧曲面(麦比乌斯)和双侧曲面

麦比乌斯圈


在CAD软件中的具体制作过程可参考
http://www.dimcax.com/resource/graph/moldBind.jpg

此帖于 2007-02-26 10:40 PM 被 cam 编辑.
cam离线中   回复时引用此帖
回复


主题工具 搜索本主题
搜索本主题:

高级搜索
显示模式

发帖规则
不可以发表新主题
不可以回复主题
不可以上传附件
不可以编辑您的帖子

vB 代码开启
[IMG]代码开启
HTML代码关闭



所有的时间均为北京时间。 现在的时间是 10:16 PM.


于2004年创办,几何尺寸与公差论坛"致力于产品几何量公差标准GD&T | GPS研究/CAD设计/CAM加工/CMM测量"。免责声明:论坛严禁发布色情反动言论及有关违反国家法律法规内容!情节严重者提供其IP,并配合相关部门进行严厉查处,若內容有涉及侵权,请立即联系我们QQ:44671734。注:此论坛须管理员验证方可发帖。
沪ICP备06057009号-2
更多